Extensions 1→N→G→Q→1 with N=C6 and Q=C23xC6

Direct product G=NxQ with N=C6 and Q=C23xC6
dρLabelID
C23xC62288C2^3xC6^2288,1045

Semidirect products G=N:Q with N=C6 and Q=C23xC6
extensionφ:Q→Aut NdρLabelID
C6:(C23xC6) = S3xC23xC6φ: C23xC6/C22xC6C2 ⊆ Aut C696C6:(C2^3xC6)288,1043

Non-split extensions G=N.Q with N=C6 and Q=C23xC6
extensionφ:Q→Aut NdρLabelID
C6.1(C23xC6) = C2xC6xDic6φ: C23xC6/C22xC6C2 ⊆ Aut C696C6.1(C2^3xC6)288,988
C6.2(C23xC6) = S3xC22xC12φ: C23xC6/C22xC6C2 ⊆ Aut C696C6.2(C2^3xC6)288,989
C6.3(C23xC6) = C2xC6xD12φ: C23xC6/C22xC6C2 ⊆ Aut C696C6.3(C2^3xC6)288,990
C6.4(C23xC6) = C6xC4oD12φ: C23xC6/C22xC6C2 ⊆ Aut C648C6.4(C2^3xC6)288,991
C6.5(C23xC6) = S3xC6xD4φ: C23xC6/C22xC6C2 ⊆ Aut C648C6.5(C2^3xC6)288,992
C6.6(C23xC6) = C6xD4:2S3φ: C23xC6/C22xC6C2 ⊆ Aut C648C6.6(C2^3xC6)288,993
C6.7(C23xC6) = C3xD4:6D6φ: C23xC6/C22xC6C2 ⊆ Aut C6244C6.7(C2^3xC6)288,994
C6.8(C23xC6) = S3xC6xQ8φ: C23xC6/C22xC6C2 ⊆ Aut C696C6.8(C2^3xC6)288,995
C6.9(C23xC6) = C6xQ8:3S3φ: C23xC6/C22xC6C2 ⊆ Aut C696C6.9(C2^3xC6)288,996
C6.10(C23xC6) = C3xQ8.15D6φ: C23xC6/C22xC6C2 ⊆ Aut C6484C6.10(C2^3xC6)288,997
C6.11(C23xC6) = C3xS3xC4oD4φ: C23xC6/C22xC6C2 ⊆ Aut C6484C6.11(C2^3xC6)288,998
C6.12(C23xC6) = C3xD4oD12φ: C23xC6/C22xC6C2 ⊆ Aut C6484C6.12(C2^3xC6)288,999
C6.13(C23xC6) = C3xQ8oD12φ: C23xC6/C22xC6C2 ⊆ Aut C6484C6.13(C2^3xC6)288,1000
C6.14(C23xC6) = Dic3xC22xC6φ: C23xC6/C22xC6C2 ⊆ Aut C696C6.14(C2^3xC6)288,1001
C6.15(C23xC6) = C2xC6xC3:D4φ: C23xC6/C22xC6C2 ⊆ Aut C648C6.15(C2^3xC6)288,1002
C6.16(C23xC6) = D4xC2xC18central extension (φ=1)144C6.16(C2^3xC6)288,368
C6.17(C23xC6) = Q8xC2xC18central extension (φ=1)288C6.17(C2^3xC6)288,369
C6.18(C23xC6) = C4oD4xC18central extension (φ=1)144C6.18(C2^3xC6)288,370
C6.19(C23xC6) = C9x2+ 1+4central extension (φ=1)724C6.19(C2^3xC6)288,371
C6.20(C23xC6) = C9x2- 1+4central extension (φ=1)1444C6.20(C2^3xC6)288,372
C6.21(C23xC6) = D4xC62central extension (φ=1)144C6.21(C2^3xC6)288,1019
C6.22(C23xC6) = Q8xC62central extension (φ=1)288C6.22(C2^3xC6)288,1020
C6.23(C23xC6) = C4oD4xC3xC6central extension (φ=1)144C6.23(C2^3xC6)288,1021
C6.24(C23xC6) = C32x2+ 1+4central extension (φ=1)72C6.24(C2^3xC6)288,1022
C6.25(C23xC6) = C32x2- 1+4central extension (φ=1)144C6.25(C2^3xC6)288,1023

׿
x
:
Z
F
o
wr
Q
<